Abstract

Graphene nanoribbons are one-dimensional multimode systems with quasilinear electron dispersion. We discuss why they are direct analogs of broad photonic crystal waveguides. Three kinds of dispersion regions found in band structure of the latter Fabry-Perot region, mini-stopband region, and coupled-zone-edge regions are traced to their equivalent in zigzag graphene nanoribbons whose edges are periodically modified. For a superperiod of 1 nm, the zone folding arising across the nearly linear low-energy part of the electronic dispersion induces these equivalent band structures. A last analogy is the capability to induce a form of localization characterized by minigap stripes and collective flatband edges through a limited modification localized within a pair of edge rows of the nanoribbon, representing typically less than 1% of the ribbon atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.