Abstract

AbstractGraphene nanoribbons (GNRs) with a non‐zero bandgap are regarded as a promising candidate for the fabrication of electronic devices. In this study, large‐scale solution synthesis of narrow GNRs was firstly achieved by the intramolecular cyclodehydrogenation of kinked tetraphenylethene (TPE) polymer precursors prepared by A2B2‐type Suzuki‐Miyaura polymerization. After the cyclization reaction, the nanoribbons have a better conjugation than the twisted polymer precursor, resulting in obvious red shift in UV/vis absorption and photoluminescence (PL) spectra. The efficient formation of conjugated nanoribbons was also investigated by Raman, FTIR spectroscopy, and microscopic studies. Furthermore, such structurally well‐defined GNRs have been successfully developed for top‐gated field‐effect transistor (FET) by directly solution processing. The AFM images show that the prepared‐GNRs thin films form crystalline fibrillar intercalating networks, which can effectively facilitate the charge transport. These FET devices with ion‐gel gate dielectrics exhibit low‐voltage operation (<5 V) with excellent mobility up to 0.41 cm2·V−1·s−1 and an on‐off ratio of 3×104, thus opening up new opportunities for flexible GNRs‐based electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call