Abstract

Graphene nanoribbons (GNRs) have demonstrated great potential for nanoscale devices owing to their excellent electrical properties. However, the application of the GNRs in large-scale devices still remains elusive mainly due to the absence of facile, nonhazardous, and nondestructive transfer methods. Here, we develop a simple acid (HF)-free transfer method for fabricating field-effect transistors (FETs) with a monolayer composed of a random network of GNRs. A polymer layer that is typically used as mechanical support for transferring GNR films is utilized as the gate dielectric. The resultant GNR-FETs exhibit excellent FET characteristics with a large on/off switching current ratio of >104. The transfer process enables the demonstration of the first GNR-based nonvolatile memory. The process offers a simple route for GNRs to be utilized in various optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call