Abstract

An electrochemical label-free aptasensor platform was developed by using amine-functionalized aptamer that was incorporated onto screen-printed carbon electrode (SPCE) modified with graphene nanoplatelets (GNPs) for the detection of lipocalin-2 (LCN-2) protein. The aptamers were covalently bound to the GNPs surface via 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and $N$ -hydroxysuccinimide (NHS) chemistry and were used as the molecular recognition element for the target protein. Successful interaction between aptamer and LCN-2 protein was ascertained via electrochemical probe, ferro-, and ferri-cyanide {Fe(CN)63−/4−} and monitored by means of square wave voltammetry (SWV) whilst layer-by-layer fabrication study was done using cyclic voltammetry (CV). The developed LCN-2 aptasensor achieved sub-picomolar detection of the protein, with the detection limit determined as 0.07 pg ml−1, and a dynamic linear range of 0.1 to 10 pg ml−1. Fabricated aptasensor successfully demonstrated high selectivity, stability, and reproducibility as well as displaying potential for the in vitro detection of LCN-2 in real serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.