Abstract
Electromagnetic interference is considered a serious threat to electrical devices, the environment, and human beings. In this regard, various shielding materials have been developed and investigated. Graphene is a two-dimensional, one-atom-thick nanocarbon nanomaterial. It possesses several remarkable structural and physical features, including transparency, electron conductivity, heat stability, mechanical properties, etc. Consequently, it has been used as an effective reinforcement to enhance electrical conductivity, dielectric properties, permittivity, and electromagnetic interference shielding characteristics. This is an overview of the utilization and efficacy of state-of-the-art graphene-derived nanocomposites for radiation shielding. The polymeric matrices discussed here include conducting polymers, thermoplastic polymers, as well as thermosets, for which the physical and electromagnetic interference shielding characteristics depend upon polymer/graphene interactions and interface formation. Improved graphene dispersion has been observed due to electrostatic, van der Waals, π-π stacking, or covalent interactions in the matrix nanofiller. Accordingly, low percolation thresholds and excellent electrical conductivity have been achieved with nanocomposites, offering enhanced shielding performance. Graphene has been filled in matrices like polyaniline, polythiophene, poly(methyl methacrylate), polyethylene, epoxy, and other polymers for the formation of radiation shielding nanocomposites. This process has been shown to improve the electromagnetic radiation shielding effectiveness. The future of graphene-based nanocomposites in this field relies on the design and facile processing of novel nanocomposites, as well as overcoming the remaining challenges in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.