Abstract

Graphene-modified phosphate-based metal/ceramic composite coatings were prepared for corrosion protection in the high-temperature marine environment. The morphology and structure of the coating were observed by SEM, and the high-temperature anticorrosion performance of the coating was analyzed by electrochemical measurement and salt spray-high temperature cycle test. The results showed that the addition of 0.1 wt% graphene could bridge the aluminum particles inside the composite coating and extend the sacrificial anode protection time of the coating in the 3.5 wt% NaCl solution from less than 4 days to more than 8 days, thus avoiding the local failure of the coating and improving the anticorrosion performance. Besides, the addition of graphene nanosheets at low content also enhanced the physical barrier effect of the coating and prolonged the penetration path of the corrosive medium without destroying the structure of the composite coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call