Abstract

Graphene was cast on basal and edge plane pyrolytic graphite electrodes for electrochemical applications. The morphology of the resulting graphene modified electrode was investigated by atomic force microscopy. In cyclic voltammetric responses, both anodic and cathodic peak currents varied linearly with the square root of scan rates over the range of 25–600 mV in 0.1 M KCl containing 5 mM Fe ( CN ) 6 4 - at graphene modified basal and edge plane pyrolytic graphite electrodes, which suggests a diffusion-controlled process. The graphene modified basal and edge plane pyrolytic graphite electrodes exhibited the abilities to lower the electrooxidation potentials of β-nicotinamide adenine dinucleotide and hydrogen peroxide in comparison with bare basal and edge plane pyrolytic graphite electrodes. The electrocatalytic behavior obtained at the graphene modified basal and edge plane pyrolytic graphite electrodes may led to new applications in electroanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.