Abstract

Nanoscale magnetic structures are fundamental to the design and fabrication of spintronic devices and have exhibited tremendous potential superior to the conventional semiconductor devices. However, most of the magnetic moments in nanostructures are unstable due to size effect, and the possible solution based on exchange coupling between nanomagnetism is still not clear. Here, graphene-mediated exchange coupling between nanomagnets is demonstrated by depositing discrete superparamagnetic Ni nano-islands on single-crystal graphene. The heterostructure exhibits ideal two-dimensional (2D) ferromagnetism with clear hysteresis loops and Curie temperature up to 80 K. The intrinsic ferromagnetism in graphene and antiferromagnetic exchange coupling between graphene and Ni nano-islands are revealed by x-ray magnetic circular dichroism and density functional theory calculations. The artificial 2D ferromagnets constitute a platform to study the coupling mechanism between complex correlated electronic systems and magnetism on the nanoscale, and the results and concept provide insights into the realization of spin manipulation in quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.