Abstract

A novel graphene-like BN/Bi4O5I2 2D-2D stacking has been prepared via a facile ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted solvothermal method with the proper pH for the first time. Series of characterizations, such as XRD, XPS, FT-IR, TEM, BET, PL, EIS and ESR have been applied to analyze the composition, morphology, structure, optical and electronic properties of the graphene-like BN/Bi4O5I2 composites. The sufficient contact and strong interfacial interaction between the graphene-like BN and Bi4O5I2 nanosheets can be effective constructed. Colorless endocrine disrupter bisphenol A (BPA) was chosen as the target pollutant to evaluate the photocatalytic degradation performance of the pure Bi4O5I2 nanosheets and graphene-like BN/Bi4O5I2 composites under visible light irradiation. The enhanced photocatalytic activity of the graphene-like BN/Bi4O5I2 composites could be attributed to the higher electron transfer ability over the graphene-like BN nanosheet and thus the molecular oxygen can be better activated. Superoxide radical and hole were determined to be the main active species during the photodegradation process. This work will provide a new sight into the design of other two-dimensional atomic level material based composites for photocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.