Abstract

The filtering capacitor plays an essential role in the ever-increasing electronics for current stability in complicated environments. However, because of the low specific capacitance and bulky volume, current filtering devices have difficulty satisfying the harsh temperature environment and small size for supercomputers, electric vehicles, aircraft and so on. Therefore, an ultra-fast electrochemical capacitor is developed on the basis of vertically oriented graphene iongel electrodes (GI-EC), which demonstrates excellent alternate current line-filtering performance with both hot tolerance of up to 150 °C and a wide voltage window of 4V. Because of the particularly oriented graphene nanosheets induced fast ion transport, this ionic electrochemical capacitor displays a high areal specific energy density of 1784 µFV2 cm-2 with a phase angle of -80.0° (120Hz) at 150 °C, which is greater than most of the reported electrochemical capacitors. Moreover, it can filter arbitrary waveforms to smooth direct current signals and works well with a wide frequency range from 10 to 104 Hz. The easy integration of GI-ECs in series or parallel can also further deliver desired capacitances or high voltages. The GI-EC with high-rate performance, wide voltage window, and high-temperature adaptability presents a great promise for universally applicable filtering capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.