Abstract

We design a tunable and broadband metamaterial absorber in the mid-infrared region based on graphene. The unit cell of the proposed metamaterial absorber consists of circular gold patches, which coupled with a graphene layer, and are separated by a dielectric spacer from the gold film on the bottom. The absorption bandwidth is effectively extended by patterning multi-circular gold patches of different dimension elements with appropriate geometrical parameters in a co-plane. The metamaterial absorber achieves its frequency tunable characteristics via changing the applied voltage or chemical doping to manipulate graphene's Fermi energy. We analyzed the surface current distributions and the distributions of the z-component electric field for understanding the absorption mechanism. Moreover, the design principle here could be regarded as a template to extend bandwidth by introducing more circular patches into each unit cell. Our design has potential applications in various fields of stealth technology, photovoltaic devices, sensors, and broadband communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.