Abstract
Changes in the crystallinity of polycarbonate (PC) induced by the simultaneous presence of 0.5 wt% graphene nanoplatelets (GnP) and supercritical carbon dioxide (sc-CO2) were examined by means of Raman spectroscopy, WAXS, SAXS and DSC. Composites were prepared by melt-mixing, compression-molding and dissolving sc-CO2 at high pressure and temperature. It was found that dissolved CO2 induced the formation of an ordered non-crystalline phase in PC during slow cooling under pressure. A fast depressurization and cooling did not cause such an effect in the resultant foams. GnP induced a higher crystallinity in PC, especially when combined with sc-CO2, even during fast depressurization and cooling. Raman spectroscopy enabled to correlate changes in the PC vibration modes with the presence of ordered phases, as well as to detect interactions between GnP and PC. Additionally, evidence of GnP exfoliation in the composites could be explained by the intensity reduction of the (002) graphite diffraction peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.