Abstract

In this study, we report the design and fabrication of a series of visible-light-responsive photocatalysts based on one-dimensional iron terephthalate (MIL-53(Fe)) microrods hybridized with graphene (GR) and experimentally demonstrate their remarkably improved visible-light-induced photocatalytic activity. During the solvothermal process, the reduction of graphene oxide (GO) is accompanied by the MIL-53(Fe) crystallization, which endows them with effective interfacial contact, thus facilitating the transfer of photogenerated charge to lower the recombination rate of excited carriers. The GR/MIL-53(Fe)-H2O2 systems exhibit significantly higher photocatalytic activity toward degrading Rhodamine B (RhB) than that of bare MIL-53(Fe)-H2O2 under visible light irradiation. The introduced H2O2 induces photosynergistic generation of more amounts of hydroxyl radicals to contribute to the improved photocatalytic activity. This work could open a new way for the exploration and utilization of metal–organic framework (MOF)-based crystalline materials for light harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.