Abstract

A new approach for creating composite nanoparticles with various morphology and electric properties, based on uniform‐sized small boron nitride (h‐BN) nanosheets and graphene flakes, is suggested. For the first time, the structures from h‐BN and graphene flakes synthesized in the helium direct current plasma jet are used to fabricate composite nanoparticles and films using 2D printing technology. A method for preparing a suspension based on these composite particles is developed. The morphology of graphene decoration with small h‐BN flakes depends on the composite content. It includes, for instance, graphene flakes covered with vertically arranged h‐BN flakes, graphene flakes encapsulated with a monolayer of h‐BN flakes. The electric properties of films and printed structures from composite nanoparticles are strongly varied (especially for the printed compositions). However, the graphene content in all cases is higher than the percolation threshold. Some composites demonstrate nonlinear current–voltage characteristics with the switching up to four orders of magnitude. In combination with the cheap printed technologies, the composite material is expected to be a perspective for electronic applications (informative processing, logic elements, tunneling graphene electronics, memristors, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.