Abstract

The study of growth kinetics of graphene on Polyimide upon carbon-dioxide (CO2) laser irradiation enables optimisation of crystal size for maximum electrical conductivity. We report the first study on growth kinetics of graphene produced by laser carbonization of polyimide using the Arrhenius equation. The peak irradiation temperature (Tirr) for each laser fluence was calculated from the photothermal model, solved by Finite Element Analysis in COMSOL software. Studies of the Raman spectra of the laser induced graphene revealed that the crystallite size increases with decreasing scan-speed at constant laser fluence. The barrier activation energy for graphene growth was found to be 0.20 ± 0.03 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call