Abstract

Development of membrane with improved carbon dioxide (CO2) gas separation capability is a significant challenge. However, the fabrication of membrane that efficiently separate and purification CO2-containing gases has been the focus of global attention. Cellulose Acetate (CA) has robust reinforcing characteristics when incorporated within a suitable polymer matrix. This work focus on the synthesis of novel mixed matrix membranes (MMMs) by introducing Graphene-grafted bimetallic MOFs in Cellulose Acetate polymer. The graphene-grafted bimetallic MOF (GG-BM MOFs) was prepared by a hydrothermal technique. Whereas, the solution casting approach used to fabricate membranes. The 1–5 wt% of GG-BM MOFs incorporated into the CA matrix. The mechanical, hydrophilicity and adsorption characteristics of fabricated MMMs were investigated. The crystallinity of MMM enhanced after the addition of GG-BM MOFs. In addition, the mechanical characteristics of MMMs were improved with the incorporation of GG-BM MOFs inside the polymer matrix. Maximum stress and strain was obtained for 2 wt% MMM (36.4 N/mm2 and 11% respectively). The CO2 adsorption performance was evaluated at 10 bar and 45 °C. The FTIR results represent insignificant bond shifting with the addition GG-BM MOFs at these conditions. The overall results showed that MMMs containing 2 wt% GG-BM MOFs have good adsorption properties for CO2 i.e 3.15 wt% of CO2. The MMMs have shown a decrease in the mechanical properties and CO2 adsorption at the higher GG-BM MOFs loading due to the presence of agglomeration which was confirmed through SEM. Thus, the addition of GG-BM MOFs in the CA matrix positively altered the physicochemical characteristics of the resulting MMMs, which could assist them in achieving remarkable CO2 adsorption at 2 wt%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.