Abstract

Carboxyl groups are ubiquitous in graphene-based materials. Decades ago, they were important in conferring cation-exchange properties to coal and coal-derived chars; today they are instrumental in converting graphite to graphene as well as in a wide variety of surface functionalization processes. And yet the essential mechanistic details of their formation have not received the attention they deserve. Here we perform quantum chemical calculations based on the density functional theory to reveal the elementary oxygen-transfer processes that are consistent with the abundant experimental literature on the oxidation of sp2-hybridized carbon materials. Prototypical graphene clusters decompose nitric acid to nitrogen oxides and the reactive hydroxyls. Carboxyl groups are thus formed by virtue of sequential hydroxyl attack at the carbon active sites (Cf) which weakens and cleaves the contiguous aromatic C-C bonds. A comparison with the other common oxidants (X, e.g., chlorate or permanganate) is carried out by distinguishing the 1O-down and 2O-down oxygen-transfer pathways. This constitutes an essential step toward the unification of a wide variety of oxidation processes involving semiquinone or dioxirane surface intermediates: Cf + XO3- = C(O) + NO2− (or ClO2−) vs. Cf + XO3- = C(O2−) + NO (or ClO) vs. Cf + XO4- = C(O2) + XO2-.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.