Abstract
The synthesis of graphene via decomposition of SiC has opened a promising route for large-scale production of graphene. However, extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions such as high temperatures (>1200°C) and ultra-high vacuum are two significant challenges hindering its wide use to synthesize graphene by decomposition of SiC. Here, we show that the readily available precursor of carbides, amorphous TiC (a-Ti1-xCx), can be transformed into graphene nanosheets (GNS) with tunable layers by chlorination method at very low temperatures (200°C) and ambient pressures. Moreover, freestanding GNS can be achieved by stripping off GNS from the surface of resulting particles. Therefore, our strategy, the direct transformation of a-Ti1-xCx into graphene, is simple and expected to be easily scaled up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.