Abstract

Highly porous poly(dimethyl siloxane) (PDMS) composites containing cellular-structured microscale graphene foams (GFs) and conductive nanoscale carbon nanotubes (CNTs) are fabricated. The unique three-dimensional, multi-scale hybrid composites with inherent percolation and a high porosity of 90.8% present a remarkable electromagnetic interference shielding effectiveness (EMI SE) of ∼75dB, a 200% enhancement against 25dB of the composites made from GFs alone with the same graphene content and porosity. The corresponding specific EMI SE measured against the composite density is 833dBcm3/g. These values are among the highest for all carbon filler/polymer composites reported thus far. Significant synergy arises from the hybrid reinforcement structure of the composites: the GFs drive the incident microwaves to be attenuated by dissipation of the currents induced by electromagnetic fields, while the CNTs greatly enhance the dissipation of surface currents by expanding the conductive networks and introducing numerous interfaces with the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.