Abstract

Three kinds of diamine monomers [ethylenediamine, butylenediamine and [Formula: see text]-phenylenediamine (PPD)] are adopted to cross-link carboxylated graphene (GP-COOH) sheets through filtration with a vacuum-assisted self-assembly technique, to fabricate highly conductive and excellent electromagnetic interference (EMI) shielding films. XRD spectroscopy of cross-linked graphene films exhibits higher interlayer [Formula: see text]-spacing than the GP-COOH film. Results of FTIR and XPS spectroscopies indicate that diamine monomers are chemically grafted to the GP-COOH sheets through nucleophilic substitution reactions. Compared with that of the GP-COOH film, electrical conductivity of the PPD-cross-linked graphene film (GP-PPD) is remarkably improved from 69.7[Formula: see text]S/cm to 248.6[Formula: see text]S/cm, attributed to the decrease of junction contact resistance between adjacent graphene sheets, nitrogen doping effect and repair of defects. Higher nitrogen content and C/O ratio are observed in the XPS spectra of the GP-PPD film, leading to higher electrical conductivity than the remaining two amine-modified graphene films. The GP-PPD film also demonstrates excellent EMI shielding performance, with EMI shielding effectiveness (SE) of 26.5 dB at a thickness of 12.5[Formula: see text][Formula: see text]m, which is also better than the others. The outstanding EMI performance of the PPD-cross-linked graphene film is mainly ascribed to the enhanced electrical conductivity and modified electronic structure with nitrogen doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.