Abstract

Two-dimensional atomic sheets of graphene represent a new class of nanoscale materials with potential applications in electronics. However, exploiting the intrinsic characteristics of graphene devices has been problematic due to impurities and disorder in the surrounding dielectric and graphene/dielectric interfaces. Recent advancements in fabricating graphene heterostructures by alternately layering graphene with crystalline hexagonal boron nitride (hBN), its insulating isomorph, have led to an order of magnitude improvement in graphene device quality. Here, recent developments in graphene devices utilizing boron-nitride dielectrics are reviewed. Field-effect transistor (FET) characteristics of these systems at high bias are examined. Additionally, existing challenges in material synthesis and fabrication and the potential of graphene/BN heterostructures for novel electronic applications are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.