Abstract

In this work, we designed and implemented a wearable body temperature monitoring device, which was constructed by a graphene-enhanced polydimethylsiloxane patch and a temperature measurement chip. The body temperature patch adopts a completely flexible solution in combination with near field communication component, which provides the advantages of passive wireless, overall flexibility, and being comfortable to wear. The whole device can be bent and stretched in conformal contact with skin. In order to improve the temperature conduction ability of the patch and make the patch data more accurate, we adopted graphene nanoplates to improve the thermal conductivity of polydimethylsiloxane patch with a significant thermal conductivity increase of 23.8%. With the combination of hollow sandwich structure and small dimension. it will reduce the uncomfortable situation of wearing the device for extended periods and can be served to monitor the human body temperature for a long time. Ultimately, this device is combined with a reading software for analyzing and processing on a smart mobile terminal. The real-time and past temperature range can be a pre-warning; meanwhile, the historical data can be traced and analyzed. Therefore, this device can be utilized in multiple human body temperature measurement scenarios and complex public health situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.