Abstract

AbstractThis paper demonstrates a simple, label‐free detection methodology for detecting single point DNA mutations. Single point mutation detection is a key enabler for diagnosis and prevention of several genetic disorders that manifest into cancers. Specifically for this purpose, herein, an electrochemical biosensor utilizing electrospun graphene doped manganese III oxide nanofibers (GMnO) is developed. The charge transfer resistance offered by GMnO is extremely sensitive to the localized change in the conductivity. This sensitivity, attributed to the low band gap of Mn2O3 and high charge transfer kinetics of graphene, is explored in the proposed mutation detection platform. As a proof of concept, ultrasensitive detection of BRCA1 gene specific point mutation is demonstrated. The target specific single stranded probe DNA is immobilized onto GMnO modified glassy carbon working electrodes via chemisorption. Post target‐DNA hybridization, differential pulse voltammetry is employed to facilitate detection of targeted point mutation, wherein, difference in peak currents is used to distinguish the target DNA as normal or mutant. Efficiency of the proposed method is evaluated against a target concentration ranging from 10 pM−1 μM. With respect to the mutated target DNA, the LoD of the proposed device is found to be 0.8±0.069 pM. The proposed approach can be extended for detecting any mutation/hybridization of interest by simply adapting an appropriate functionalization protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.