Abstract

In the present work, we have investigated the electrochemical behavior and electrocatalysis of hemoglobin (Hb) immobilized on a glassy carbon electrode (GCE) modified with a graphene-cellulose microfiber (GR–CMF) composite. The GR–CMF composite was characterized by scanning electron microscopy, elemental analysis, and Raman and Fourier transform infrared spectroscopy. Well-defined electrochemical redox characteristics of Hb were observed for Hb immobilized on a GR–CMF composite modified GCE, with a formal potential of −0.306V and a peak to peak separation of approximately 67mV. Due to the high biocompatibility of the GR–CMF composite, the electrochemical behavior of the Hb heme redox couple (FeII/FeIII) was enhanced for Hb immobilized on the GR–CMF composite when compared to Hb immobilized on pristine GR. The heterogeneous electron transfer constant (ks) was calculated as 6.17 s−1, and is higher than previously reported for Hb immobilized GR supports. The Hb immobilized GR–CMF composite modified electrode was used for the quantification of H2O2 under optimal conditions, and shows a wider linear amperometric response ranging from 0.05 to 926μM. The limit of detection of the biosensor was 0.01μM with the sensitivity of 0.49μAμM−1cm−2. The biosensor also showed high selectivity in the presence of the range of interfering compounds and exhibits good operational stability and practicality in the detection of H2O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.