Abstract
Graphene deposited on the surface of a carbon felt (CF) using a solution coating method has been developed as a high-performance positive electrode for an all vanadium redox flow battery (VRB). A key to obtain excellent electrochemical activity towards the VO2+/VO2+ redox couple is to wrap the CF using the graphene with high specific surface area and superb conductivity. It is found that the dipping times of CF into the graphene/Nafion solution significantly affect its electrochemical activity. The cyclic voltammetry (CV) results indicate that with 5 dipping times, the graphene coated CF (G/CF) exhibits the highest peak current and lowest peak potential difference towards the VO2+/VO2+ redox couple. More importantly, the VRB assembled with our novel G/CF cathodic electrode shows a decreased polarization during charge/discharge process compared with the control VRB with the pristine CF. Consequently, both the voltage efficiency and energy efficiency of the VRB with G/CF electrode have increased compared to the one with pristine CF. Our work provides a simple solution coating process to fabricate graphene modified CF electrode for VRB with high performance and this simple method is believed to be promising in other electrocatalysts applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.