Abstract

AbstractThe growing requirements for electrified applications entail exploring alternative battery systems. Lithium‐sulfur batteries (LSBs) have emerged as a promising, cost‐effective, and sustainable solution; however, their practical commercialization is impeded by several intrinsic challenges. With the aim of surpassing these challenges, the implementation of a holistic LSB concept is proposed. To this end, the effectiveness of coupling a high‐performing 2D graphene‐based sulfur cathode with a well‐suited sparingly solvating electrolyte (SSE) is reported. The incorporation of bis(fluorosulfonyl)imide (LiFSI) salt to tune sulfolane and 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropylether based SSE enables the formation of a robust and compact lithium fluoride‐rich solid electrolyte interphase. Consequently, the lithium compatibility is improved, achieving a high Coulombic efficiency (CE) of 98.8% in the Li||Cu cells and enabling thin and dense lithium depositions. When combined with a high‐performing 2D graphene‐based sulfur cathode, a symbiotic effect is shown, leading to high discharge capacities, remarkable rate capability (2.5 mAh cm−2 at C/2), enhanced cell stability, and wide temperature applicability. Furthermore, the scalability of this strategy is successfully demonstrated by assembling high‐performing monolayer prototype cells with a total capacity of 93 mAh, notable capacity retention of 70% after 100 cycles, and a high average CE of 99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.