Abstract
AbstractThe exponential growth of global data traffic is driven by the unprecedented digitalization of the world. To meet the demands of next‐generation high‐capacity data communication systems, innovative solutions are required. Silicon photonics has gained significant attention due to its ability to integrate multiple core functions of optical interconnects into small‐scale chips, offering cost‐effective and scalable manufacturing capabilities. By leveraging silicon photonics, it becomes possible to address the challenge of scaling system complexity while reducing size, cost, and energy consumption. Despite its advantages, silicon has inherent limitations that restrict its application range, such as the weak plasma dispersion effect and relatively large bandgap. Recently, graphene has emerged as a promising solution for traditional silicon photonics because of its exceptional electrical and optical properties. For instance, graphene on a silicon chip enables nearly pure phase modulation and ultrafast photodetection beyond 500 GHz. Moreover, the demonstrated compatibility of graphene with wafer‐level integration paves the way for mass production of graphene‐based silicon photonic devices, offering improved yield, scalability, and cost‐effectiveness. In this work, a comprehensive review is provided, focusing on graphene‐based silicon photonic devices and their applications in optical interconnects, aiming to explore the potential of graphene in advancing silicon photonic technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.