Abstract

Graphene based sensors have shown excellent potential in the trace detection of specific gases which are hazardous to humans or environmentally toxic. Sensor designs incorporating pristine graphene, graphene oxide, and nanopatterned graphene have been the focus of much recent experimental and computational research. The application of graphene based sensors in the trace detection of explosives has seen relatively limited study, due in part to the difficulties of conducting experiments using the nitramine and aromatic explosives of central interest. Computational studies of explosive sensors are not subject to hazardous materials handling constraints, and may be used to complement experimental research on the development of low weight, low power, graphene-based sensors. Ab initio models of five different graphene nanoribbon sensor configurations have been developed, and their chemiresistive response to three widely used explosives and four background gases has been investigated. The results indicate that t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.