Abstract

AbstractThe continuous development of integrated electronics such as maintenance‐free biosensors, remote and mobile environmental sensors, wearable personal electronics, nanorobotics etc. and their continued miniaturization has led to an increasing demand for miniaturized energy storage units. Microsupercapacitors with graphene electrodes hold great promise as miniaturized, integrated power sources thanks to their fast charge/discharge rates, superior power performance, and long cycling stability. In addition, planar interdigitated electrodes also have the capability to reduce ion diffusion distances leading to a greatly improved electrochemical performance. Either as standalone power sources or complementing energy harvesting units, it is expected that graphene‐based microsupercapacitors will play a key role as miniaturized power sources in electronic microsystems. This review highlights the recent development, challenges, and perspectives in this area, with an emphasis on the link between material and geometry design of planar graphene‐based electrodes and their electrochemical performance and integrability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.