Abstract
Abstract A new virus, the coronavirus (COVID-19), is causing serious respiratory infections in humans. Rapid, specific, and sensitive diagnostic techniques for early-stage detection of SARS-CoV-2 viral protein are developing as a necessary response for effective smart diagnostics, treatment optimization, and exploration of therapeutics with better effectiveness in the fight against the COVID-19 pandemic. Keeping the considerations mentioned above, we propose a new modeling graphene nanocomposite-based biosensing device for detecting COVID-19 at the site of the epidemic as the best way to manage the pandemic. It is important to address the problems of COVID-19 management. With the challenges and aspects of COVID-19 management in mind, we present in this review a collective approach involving electrochemical COVID-19 biosensing required for early-stage COVID-19 diagnosis and the direct interaction with viral surface glycoproteins and metal nanoparticles that can enter cells and neutralize viruses by interacting directly with the viral genome (ribonucleic acid), which identifies the COVID-19 spike protein and antiviral procedure including virus inactivation, host cell receptor inactivation, electrostatic entrapment, and physicochemical destruction of viral species by nucleotide ring opening. The interactions between the graphene composite and virus may be boosted by functionalization of the carbon surface and decoration of metallic components that enhance these interactions. Our proposed new modeling molecular dynamic simulation-based neutralizing mechanism and real-time detection of COVID-19 on graphene nanocomposite-based biosensors are suitable for point-of-care diagnostic applications, and this sensing platform can be modified for the early diagnosis of severe viral infections using real samples. For the potential application, the suggested one is the chemical reaction and bond breaking between the metallic component and molecule of COVID19 with computer simulation data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.