Abstract

A graphene-based metamaterial transmitarray antenna is proposed to generate tunable orbital angular momentum (OAM) vortex waves in terahertz. Theoretical design of the transmitarray antenna has been developed by using the transmission line network model, and a multilayer graphene-based metamaterial element has been designed. By changing the chemical potentials of the graphene sheets, the 360° transmission phase range of the element is achieved in a broad band from 4.2 THz to 5.6 THz. By arranging the metamaterial element into a transmitarray, the OAM waves with tunable modes including l = 0, ±1, ±2 and the mode purity greater than 0.96 are generated. Simulation results are given to demonstrate good performance of the proposed design, which provides a feasible way to the efficient generation and manipulation of the OAM vortex waves in terahertz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.