Abstract
Cardiovascular disease (CVD) is the leading cause of mortality around the world. Diagnosis of CVD using biosensing strategy poised to improve the precision and efficiency of CVD treatment in standard clinical practice. Electrochemical biosensors show great promise for early and accurate diagnosis of cardiovascular diseases, paving the way for personalized medicine and improved patient outcomes. Nanomaterials are emerging as a must need tool in biosensor fabrication. Graphene-based nanomaterials exhibit exceptional electrical conductivity, large surface area, and enhanced biofunctionalization ability for the receptor molecules, serving as an ideal platform for sensitive and selective biosensing applications, which in turn offers high sensitivity, rapid response times, and portability, making them ideal for point-of-care testing. The use of aptamers or molecularly imprinted polymers over antibodies as receptor can provide tool to develop innovative, highly stable biosensors over classical biosensors. In this review, electrochemical state-of-art technology for biosensor development incorporating graphene-related nanomaterials are discussed. Recently developed graphene-based electrochemical nanobiosensors for cardiac biomarker detection are reviewed. Current trends in biosensing strategy and future perspectives are outlined, with a focus on the potential use of graphene-related nanomaterials in electrochemical biosensing platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.