Abstract
We present a method for substantially enhancing the rate of heat transfer into and out of the working fluid of a heat engine, using bidirectional thermal radiation exchange between the external environment and many individual graphene layers that are dispersed and suspended within an inert gas. This hybrid working fluid has the unique composite property of high optical absorption/emission yet low specific heat. Consequently, it can heat and cool rapidly, enabling a much greater cycle frequency and a commensurate increase in specific power, in comparison to conventional closed-cycle heat engines for which the cycle frequency is limited by the use of slower, non-radiative, thermal transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.