Abstract

In this paper, a systematic method has been developed to produce highly flexible and robust graphene/LiMn2O4 (G/LMO) and graphene/LiCr0.05Mn1.95O4 (G/LCMO) free-standing composite cathode electrodes with increased specific capacity and improved electrochemical capability. Spinel LMO nanorods are synthesized by calcination method followed by a hydrothermal reaction technique. As-synthesized nanorods were then embedded in a graphene layer which will in turn serve as a self-standing binder-free cathode electrode. Spinel LMO and LCMO nanorods with a length of 600 nm and width of 50 nm were then homogenously entrapped and distributed within the layers of conductive graphene structure. This hybrid structure will help to eliminate the use of heavy metal current collectors and electrically resistant binders or even conductive additives. A discharge capacity of 114.5 mAh g−1 is obtained after first cycle and %72 capacity retention is obtained after 250 cycles from G/LCMO freestanding samples. The enhancement in the electrochemical properties is due to the unique freestanding structure of the cathode electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.