Abstract

Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift are investigated in a two-prism frustrated total internal reflection configuration. Due to the excitation of surface plasmons induced by graphene in a low terahertz frequency range, there exist the resonant transmission and anomalous Goos-Hänchen shifts in such an optical tunneling configuration. As compared to the case of the quantum well, a graphene sheet with unique optical properties can enhance the resonant transmission with a relatively low loss and modulate the large negative and positive Goos-Hänchen shifts by adjusting the chemical potential or electron relaxation time. These intriguing phenomena may lead to some potential applications in graphene-based electro-optic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.