Abstract
Graphene sheets quench the singlet and triplet excited states of a series of six photochemical probes including pyrene, acridine orange, tris(2,2́-bipyridyl)ruthenium(II) dichloride, methylene blue, meso-tetrakis(phenylsulphonate)porphyrin, and 5,10,15,20-tetraphenyl-21H,28H-porphine zinc. It was found that Stern-Volmer fluorescence quenching can fit to one or two different quenching regimes depending on the probe. In addition, the quenching can be either static or dynamic depending on the fluorophore. The occurrence of several quenching regimes has been interpreted considering that quenching arises from the crowding of the fluorophore on both graphene faces, or site isolation on the graphene sheets. Laser flash photolysis has shown that the triplet lifetime of the probes generally decreases due to graphene quenching and that no new transients appear except in the case of methylene blue, where a new absorption spectrum characterized by a continuous absorption band is observed and attributed to graphene radical ion. This spectroscopic evidence suggests that the most general quenching mechanism is energy transfer from the singlet or triplet excited state of the dye to graphene. This raises the issue of determining the energy of the electronic excited states of graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.