Abstract

In this work, we exploit the bidimensional structure and high stiffness of graphene to improve the tribological response of nylon-based composites. Graphene nanoplatelets, coupled with polytetrafluoroethylene microparticles, synergistically improve the friction coefficient and wear rate, as well as the adhesion to the substrate. The enhancement, as high as threefold for both friction and wear rate at the optimal graphene concentration (0.5% in weight), depends upon the formation of a continuous, robust transfer film with the steel rubbing counterpart, as shown by Raman measurements. The graphene-nylon coating also shows three-fold improved adhesion to the underlying substrate, attributed to the high surface energy of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.