Abstract

Highly conductive, metal-like poly(ethylene terephthalate) (PET) nonwoven fabric was prepared by coating poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) containing dimethyl sulfoxide (DMSO) onto PET nonwoven fabric previously coated with graphene/graphite. The sheet resistance of the original nonwoven fabric decreases from >80 MΩ□-1 to 1.1 Ω□-1 after coating with 10.7 wt % graphene and 5.48 wt % PEDOT:PSS with a maximum current at breakdown of 4 A. This sheet resistance is lower than previously reported sheet resistances of fabrics coated with graphene films, PEDOT:PSS films, or PEDOT:PSS coated fabrics from the literature. The effect of temperature on the resistance of graphene/PEDOT:PSS coated fabric has revealed that the resistance decreases with increasing temperature, analogous to semiconductors, with a clear semiconductor-metal transition occurring at 290 K. Finally, a coating of 18 wt % graphene/graphite and 2.5 wt % PEDOT:PSS (Rs = 5.5 Ω□-1) screen printed on the nonwoven fabric was shown to function as an electrode for electrocardiography without any hydrogel and with dry skin conditions. This composite coating finds application in wearable electronics for military and consumer sectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.