Abstract
Graphene-based materials are promising electrodes for supercapacitors, owing to their unique two-dimensional structure, high surface area, remarkable chemical stability, and electrical conductivity. In this paper, graphene is explored as a platform for energy storage devices by decorating graphenes with flower-like MnO 2 nanostructures fabricated by electrodeposition. The as-prepared graphene and MnO 2, which were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), have been assembled into an asymmetric supercapacitor. The specific capacitance of the graphene electrode reached 245 F/g at a charging current of 1 mA after an electro-activation process. This value is more than 60% larger than the one before electro-activation. The MnO 2 nano-flowers which consisted of tiny rods with a thickness of less than 10 nm were coated onto the graphene electrodes by electrodeposition. The specific capacitance after the MnO 2 deposition is 328 F/g at the charging current of 1 mA with an energy density of 11.4 Wh/kg and 25.8 kW/kg of power density. This work suggests that our graphene-based electrodes are a promising candidate for the high-performance energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.