Abstract

Graphene is generally thought to be a perfect membrane that can block completely the penetration of impurities and molecules. Here we use density-functional theory calculations to examine this property with respect to prototype atomic species. We find that hydrogen and oxygen atoms have, indeed, prohibitively large barriers (4.2eV and 5.5eV) for permeation through a defect-free graphene layer. We also find, however, that boron permeation occurs by an intricate bond switching synergistic process with an activation energy of only 1.3eV, indicating easy B penetration upon moderate annealing. Nitrogen permeation has an intermediate activation energy of 3.2eV. The results show that by controlling annealing conditions, pristine graphene could allow the selective passage of atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.