Abstract

The development of an effective method for detecting heavy-metal ions remains a serious task because of their high toxicity to public health and environments. Herein, a new electrochemical method based on a graphene aerogel (GA) and metal-organic framework (MOF) composites was developed for simultaneous detection of multiple heavy-metal ions in aqueous solutions. The GA-MOF composites were synthesized via the in situ growth of the MOF UiO-66-NH2 crystal on the GA matrix. GA not only serves as the backbone for UiO-66-NH2 but also enhances the conductivity of the composites by accelerating the electron transfer in the matrix. UiO-66-NH2 worked as a binding site for heavy-metal ions because of the interaction between hydrophilic groups and metal cations. The detection performance of the GA-UiO-66-NH2 composite-modified electrodes was determined. The developed electrochemical method can be successfully applied for individual and simultaneous detection of heavy-metal ions, namely, Cd2+, Pb2+, Cu2+,and Hg2+, in aqueous solutions with high sensitivity and selectivity. The method can also be used for simultaneous detection of Cd2+, Pb2+, Cu2+, and Hg2+ in river water and the leaching solutions of soil and vegetable with high accuracy and reliability. This work provides a new approach for simultaneous detection of multiple heavy-metal ions in practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.