Abstract
In this paper, the two-step activation Eucommia wood tar-based activated carbon (ETAC), cellulose nanofibers (CNF) and reduced graphene oxide (rGO) were assembled to form composite aerogel in mild condition. Impressively, the doping of optimizing ETAC greatly improved the overall specific surface area (SSA) of the aerogel, and the CNF extracted from Eucommia ulmoides wood was used to enhance the mechanical properties of graphene aerogel. Besides, the composite aerogels with high content of ETAC (67% of mass ratio) possessed efficient MnOx deposition capability (1540 mg/g), which could assemble an asymmetric free-binder supercapacitor, exhibiting an ultrahigh specific capacitance and prominent cycling stability. This work offered a feasible method to fabricate free-binder composite aerogels with excellent electrochemical property for broad applications in supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.