Abstract
Hydrodynamics and collision-dominated transport are crucial to understand the slow dynamics of many correlated quantum liquids. The ratio eta/s of the shear viscosity eta to the entropy density s is uniquely suited to determine how strongly the excitations in a quantum fluid interact. We determine eta/s in clean undoped graphene using a quantum kinetic theory. As a result of the quantum criticality of this system the ratio is smaller than in many other correlated quantum liquids and, interestingly, comes close to a lower bound conjectured in the context of the quark gluon plasma. We discuss possible consequences of the low viscosity, including preturbulent current flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.