Abstract

Long-range ferromagnetic ordering in semiconductors has become an attractive research hotspot due to its promising potential in spintronics and information technology. Especially the appearance of carbon-based semiconductors represented by graphdiyne (GDY) makes it easy to realize ferromagnetic semiconductors. Herein, a convenient and effective route has been developed to prepare GDY-based magnetic semiconductors using the modification with transition metal elements including Fe, Co, and Ni, respectively. Among them, lightly doped GDY with Co (Co-GDY) exhibits the most outstanding ferromagnetism with a typical Curie's temperature above room temperature. Meanwhile, the coercive field Hc = 78 Oe at T = 300 K of Co-GDY is the smallest, demonstrating characteristics of easy magnetization. Subsequent spin-polarized DFT calculation results reveal that the robust ferromagnetism of Co-GDY arises from the most significant local magnetic moment. Significantly, a noticeable band gap can still be maintained due to the very light doping level. These results reveal an optimization strategy for selecting doping elements, promoting carbon-based semiconductors application in spin-related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.