Abstract

Electrocatalysts with high efficiency and low cost are always urgently needed for oxygen reduction reaction (ORR). As a new carbon allotrope, graphdiyne (GDY) has received much attention due to its unique chemical structure containing sp- and sp2-hybridized carbons, and intrinsic electrochemical activity ascribed to its inherent conductivity. Herein, we prepared two graphdiyne materials named GDY nanotube and nitrogen-doped GDY (NGDY) nanotube via cross-coupling reactions on the surface of Cu nanowires. As metal-free catalysts, their electrocatalytic activities for ORR were demonstrated. The results showed that the NGDY nanotube presents more excellent electrochemical performance than that of the GDY nanotube, including more positive potential and faster kinetics and charge transfer process. The improvement can be ascribed to the greater number of structural electrocatalytic active sites from nitrogen atoms as well as the hollow nanotube morphology, which is beneficial to the adsorption of oxygen and acceleration of the catalytic reaction. This work helps develop high-quality graphdiyne-based electrocatalysts with well-defined chemical structures and morphologies for various electrochemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.