Abstract

Abstract Generating the Numerical Control (NC) tool path for machining a complex shaped component is highly dependent on the proficiency of a Computer-Aided Manufacturing (CAM) programmer in manufacturing field, although the CAM systems now are highly integrated. A Computer-Aided Process Planning (CAPP) system, which can automatically extract the manufacturing features from the Computer-Aided Design (CAD) model and generate the machining process planning, has been expected for a long time. In this research, a graph-based CAPP system was proposed. It mainly includes four modules, data conversion module, feature classification module, feature combination module and process planning module. The first two modules claim a graph-based feature recognition method, output the recognized manufacturing features which are classified into four classes and defined as specific types. The feature combination module generates different paths to combine manufacturing features from a goal model into raw material shape by four kinds of combination methods corresponding to the four classes. Finally, the process planning module will give a cost estimation of all those paths with the consideration of manufacturing resources and time cost. A relatively optimized machining method and machining sequence will be generated as the output of this proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.