Abstract

We present an efficient graph-based evolutionary optimization technique, called evolutionary graph generation (EGG), and the proposed approach is applied to the design of combinational and sequential arithmetic circuits based on parallel counter-tree architecture. The fundamental idea of EGG is to employ general circuit graphs as individuals and manipulate the circuit graphs directly using new evolutionary graph operations without encoding the graphs into other indirect representations, such as the bit strings used in genetic algorithm (GA) proposed by Holland (1992) and trees used in genetic programming (GP) proposed by Koza et al. (1997). In this paper, the EGG system is applied to the design of constant-coefficient multipliers and the design of bit-serial data-parallel adders. The results demonstrate the potential capability of EGG to solve the practical design problems for arithmetic circuits with limited knowledge of computer arithmetic algorithms. The proposed EGG system can help to simplify and speed up the process of designing arithmetic circuits and can produce better solutions to the given problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.