Abstract

Communication networks are important infrastructures in contemporary society. There are still many challenges that are not fully solved and new solutions are proposed continuously in this active research area. In recent years, to model the network topology, graph-based deep learning has achieved the state-of-the-art performance in a series of problems in communication networks. In this survey, we review the rapidly growing body of research using different graph-based deep learning models, e.g. graph convolutional and graph attention networks, in various problems from different types of communication networks, e.g. wireless networks, wired networks, and software defined networks. We also present a well-organized list of the problem and solution for each study and identify future research directions. To the best of our knowledge, this paper is the first survey that focuses on the application of graph-based deep learning methods in communication networks involving both wired and wireless scenarios. To track the follow-up research, a public GitHub repository is created, where the relevant papers will be updated continuously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.