Abstract

This paper presents a learning based motion planning method for robotic manipulation, aiming to solve the asymptotically-optimal motion planning problem with nonlinear kinematics in a complex environment. The core of the proposed method is based on a novel neural network model, i.e., graph wasserstein autoencoder (GraphWAE) network, which is used to represent the implicit sampling distributions of the configuration space (C-space) for sampling-based planning algorithms. Through learning the implicit distributions, we can guide the planning process to search or extend in the desired region to reduce the collision checks dramatically for fast and high-quality motion planning. The theoretical analysis and proofs are given to demonstrate the probabilistic completeness and asymptotic optimality of the proposed method. Numerical simulations and experiments are conducted to validate the effectiveness of the proposed method through a series of planning problems from 2D, 6D and 12D robot C-spaces in the challenging scenes. Results indicate that the proposed method can achieve better planning performance than the state-of-the-art planning algorithms. Note to Practitioners—The motivation of this work is to develop a fast and high-quality asymptotically optimal motion planning method for practical applications such as autonomous driving, robotic manipulation and others. Due to the time consumption caused by collision detection, current planning algorithms usually take much time to converge to the optimal motion path especially in the complicated environment. In this paper, we present a neural network model based on GraphWAE to learn the biasing sampling distributions as the sample generation source to further reduce or avoid collision checks of sampling-based planning algorithms. The proposed method is general and can be also deployed in other sampling-based planning algorithms for improving planning performance in different robot applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.