Abstract
This paper reports a new structural approach for automated classification of histopathological tissue images. It has two main contributions: First, unlike previous structural approaches that use a single graph for representing a tissue image, it proposes to obtain a set of subgraphs through graph walking and use these subgraphs in representing the image. Second, it proposes to characterize subgraphs by directly using distribution of their edges, instead of employing conventional global graph features, and use these characterizations in classification. Our experiments on colon tissue images reveal that the proposed structural approach is effective to obtain high accuracies in tissue image classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.